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We consider classical lattice systems with finite-range interactions in d dimen- 
sions. By means of a block-decimation procedure, we transform our original 
system into a polymer system whose activity is small provided a suitable 
factorization property of finite-volume partition functions holds. In this way we 
extend a result of Olivieri. 
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1. I N T R O D U C T I O N  

This paper is concerned with the statistical mechanics of classical lattice 
spin systems in d dimensions. By means of a block-decimation procedure, 
we introduce a cluster expansion which is convergent provided a suitable 
finite-size condition is fulfilled. In this way we extend to the general 
d-dimensional situation the results already found in ref. 1 for the two- 
dimensional case. We refer to this last paper for a more complete discus- 
sion of the motivations and the interest of our approach. 

Here we only remark on the differences with respect to the standard 
high-temperature expansions (see, for instance, ref. 2). 

(i) The basic length scale in terms of which the geometrical objects 
of the expansion are defined is one ( - t h e  spacing of the lattice) in the 
standard theories, whereas it is a free parameter L in ours. 

(ii) The reference system around which one performs the perturba- 
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tion (cluster) expansion is universal (e.g., is a system of independent spins) 
in the usual theories; in our approach it consists of a set of finite-volume 
systems independent of each other but with nontrivial correlations in their 
interior. 

(iii) The small parameter in the usual high-temperature of low- 
activity expansion is just the inverse temperature or the activity or some 
simple combination of them; here it is related to the mixing properties of 
a finite-volume system. We do not need, a priori, that all the interactions 
between the microscopic constituents of our system be small, but, rather, 
we take advantage of the thermal averages in order to exploit the weak 
effective interaction between regions that are sufficiently far apart with 
respect to the correlation length. 

For the above reasons we believe that our approach can be useful, 
for instance, for treating ferromagnetic systems in the "intermediate- 
temperature" region, namely in the region of temperatures ITs,, To], where 
Tc is the critical temperature, Tc- inf{T:  spontaneous magnetization 
m*(T) = 0}, and To is the estimated threshold of absolute convergence of 
the usual high-temperature expansion. 

Our results imply the absence of any kind of phase transition; so if 
our condition for a finite-volume system can be verified (for example, by 
means of a computer), then from its validity one can deduce rigorous 
consequences about the corresponding infinite-volume system. 

We think that our condition can be useful for a computer-assisted 
proof of the absence of a phase transition even though to get significant 
improvements of the region of convergence with respect to the traditional 
cluster expansions one probably needs very powerful computers. 

Our results are strictly related to the analogous ones by Dobrushin 
and Shlosman. In ref. 3-6 these authors developed a theory of the unique- 
ness and analyticity of the Gibbs states which does not make use of the 
cluster expansion. In ref. 6 the authors give 12 equivalent conditions that 
ensure that a given system belong to the class of the so-called completely 
analytical interactions. 

These conditions are "constructive" in the sense that they only need to 
be verified in some finite volume V whose size depends on the constants 
involved in the conditions themselves (see ref. 6 for more details). As 
remarked in ref.1, the Dobrushin-Shlosman conditions imply ours and it is 
very easy to see that the present paper constitutes, in particular, an 
alternative proof of the results of ref. 6 (see Remark 2.1). 

In other words, Theorem 1.1 below says that we have found another 
equivalent constructive condition for an interaction to belong to the class 
of completely analytical potentials. We think this result of some interest not 
only because it possibly gives a better and easier-to-verify condition, but 
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also because its proof, which is based on a very different approach, seems 
to be shorter and, in our opinion, more transparent. 

Moreover, we think that our approach can be applied to some 
problems generally treated via high-temperature expansions, such as the 
Ornstein-Zernike behavior of the two-point correlation function. Finally, 
we want to stress that our approach allows us to obtain a finite-size condi- 
tion for the convergence involving thermal averages (see Theorem 1.2) 
instead of the supremum over the boundary conditions (see Theorem 1.1). 
Of course, one cannot avoid using this kind of condition in mean in order 
to treat systems of unbounded spins. On the other hand, our weaker condi- 
tion can be useful also for Monte Carlo simulations. One can "measure" 
with a Monte Carlo method the quantities involved in our sufficient condi- 
tion and state (if it is satisfied) that one is in the pure phase region. In 
other words, one can perform an "empirical" test for the validity of a 
condition which rigorously implies the absence of phase transitions for 
the infinite-volume system. 

Let us now define the model and state the results. 
Given A c Z d, the configuration space in A is the set SA = {0, 1 ..... S} A 

for some fixed integer s. A configuration in A is a map cr: A ~ {0, 1 ..... s}. 
We denote by 1AI the cardinality of a finite set A c Z  d, and for 
x = (xl ;...; xd), y = (Yl ;...; Yd) in Z d we denote by dist(x, y) or Ilx - yll the 
distance defined as 

[ Ix-  Yll = max I x i -  Y,I 
i = 1 . . . ,  d 

If A c Z a, diam A--= supx. y~A • IIX--Yll is the diameter of A. We suppose 
given a potential U =  {Ux; X c Z  a, [XI < oc}, Ux: Sx-+ ~ such that: 

(C1) ~ro>0:  Ux=O if diam X>ro (finite range). 
( 6 2 )  V x ~  7/d, IXI < ~,  Vy e Z d, ux+ y = U• (translation invariance). 
Given a finite volume A c 7/a, we denote by 

- 1  
HA(aA)=---T- ~ Ux((Tx) (1.1) 

the energy associated with the generic spin configuration (aA) in SA 
multiplied by - 1 / T  (T being the temperature). 

Given two disjoint finite regions A~, A2 in g d, we define the inter- 
action between A~ and A 2 by 

WA~,A2(aAI' (7A2) = HA~ ~A2(aA~' aA2) -- HA~(aA~) -- HA2(aA2) (1.2) 

Given a finite volume A ~ Y ,  we call the "outer boundary" of A the set 

~ro A = {x~ Za\A: dist(x, A)~<r0} 

822/59/ i -2 -15  
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Given a spin configuration flOro~ ~ SOroA' the finite-volume Gibbs measure 
with boundary condition fl is given by 

#~(GA)= Z(A;  f l ) - l  exp[HA(ff  A)-t- WA,OroA(ff A, fiOroA) "] (1.3) 

where 

Z(A; fl) = ~ exp HA(a , )  + WA,O,OA(aA, fle,o ~) (1.4) 
~A ~ SA 

is the partition function in A with boundary conditions ft. We often say 
that A and fl are respectively the support and the boundary conditions of 
the partition function Z(A; fl) and we write 

We set, Vfl, 

A = supp Z(A, fl) (1.5) 

Z ( ~ ; f l ) =  1 (1.6) 

Now let QL(x) be the cube of edge L centered at x, for a given x e 7/a and 
an odd integer L; namely 

QL(X)={y~7/a:,lx--y,,<~2 1} 

Let Q3L-  Q3L(O) be the cube of edge 3L and center the origin of 7/d. 
We set 

+ ' )  Q3L Q3L(J) w Q~ w Q3L(J 

where 

Q 0 ) + . - ( j ) =  {ysQL(x), QL(X) cQ3L, (x) j=0,  + L , - L }  (1.7) 

where j e  {1, 2,..., d} and (x)j is the j th  component of x. 
In other words, we divide Q3L into three slices according to a given 

direction of the lattice. 
Let L be an odd in teger>r  0. Let PL,j be the set of all subsets of 

0 �9 Q3L(J) which (i) are unions of cubes QL(x), (ii) contain QL(O), and (iii) are 
symmetric with respect to all the directions of the lattice different from the 
j th  one. 

Let a+ ,  a_  0be spin configurations ~S,~+(j ~3LtJ~'" SQ3L(j) and ~ a spin 
configuration sSQ3L(j)~a; we denote by Z )(A;a ,a+,~) the partition 
function with support A ~ PL.j and boundary conditions a + in Q;/2 +(J), 
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respectively, ~ in Q~ and 0, namely the configuration identically equal 
to 0 in Q; / .  Notice that here 0 plays only the role of a fixed reference con- 
figuration. 

C o n d i t i o n  CL. For a given L the following inequality holds: 

Z(J)(A;a-'a+'r)Z(J)(A;O'O'~) 1 
sup sup sup (J)(A; - ~ , , i - ) Z ~ , ; + . ~ )  

a_ ,a+, z  j A = P L , j  Z 0 7 

< [3(2a+1 + 1 ) ] - a . 2 - 2 %  -4 (].8) 

The following theorem contains our main result. 

Theorem 1.1. Suppose that conditions C1 and C2 are satisfied and 
that there exists an L such that the corresponding condition CL holds. 
Given U 1 ..... U t translationally invariant real potentials with finite range 
~<r0, consider the complex partition function Z(A;fl; U) defined as in 
Eq. (1.4) with ~[=U+~}-~=I,~jU j in place of U and 2jeC,  j = l  ..... l. Let 
f~A" Ct ~ C be given by 

1 
f~A(21 ..... 2l) = ]--~ log Z(A, fl, ~Y) (1.9) 

Then there exists a neighborhood f2 of 0 in C ~ such that, for 
2 - (21,..., 2l) e O, the limit 

1 
lim - -  l o g  Z(A; ~; ~J) 
aTz~ tAt 

exists and is a holomorphic function of 21 ,..., 2~ in f2. 

In fact, the thesis of the previous theorem could have been, 
immediately after Eq. (1.9), "Then, there is a convergent cluster expansion 
for the free energy." 

The above analyticity result is quite standard to deduce when expres- 
sion (2.5.6) and Proposition 2.5.2 below hold true. 

Moreover, in this situation one can prove uniqueness of the Gibbs state 
as well as more general analyticity results also concerning thermal averages 
of local observables even with respect to nontranslationally invariant com- 
plex perturbations. Finally, exponential decay of truncated correlation 
functions can also be proven. We omit the complete proof of Theorem 1.1 
and we just prove Proposition 2.5.2, of which, using Proposition 2.5.3, it is 
an easy corollary. 

Looking at the proof of Proposition 2.5.1, it is not hard to see that our 
results can be extended to the case of long-range interactions that decay 
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with the distance r at least as 1/r 2d+~ (where d is the dimension and e > 0). 
In fact, one can adapt  to the general d-dimensional case the methods 
developed in refs. 7 and 8. The case of general compact spin systems does 
not present any particular new difficulty and a result similar to Theorem 
1.1 can be obtained along the same lines. 

The announced stronger result is contained in the following Theorem 
1.2. For  simplicity, we state it in the same hypotheses as those of Theorem 
1.1, but it is clear that one can obtain a similar result also for the case of 
unbounded spin systems. The statement of Theorem 1.2 needs many 
preliminary definitions and it is only to give a simpler and self-contained 
statement that we have given the weaker form of the result contained in 
Theorem 1.1. 

T h e o r e m  1.2. Suppose that conditions C1 and C2 are satisfied and 
that there exists an L such that the corresponding condition C~c of Section 
2 below is satisfied. Then the statement of Theorem 1.1 holds true. 

Again the complete proof  is omitted. It is an easy consequence of 
Propositions 2.5.2 and 2.5.4. 

2. P O L Y M E R I Z A T I O N  A N D  C L U S T E R  E X P A N S I O N  

The main purpose of the present section is to transform our original 
spin system into a polymer system by performing a block-decimation pro- 
cedure. Since this section is rather long, we now give a short description of 
it. In Section 2.1 we introduce a partition of Z d into 2 d disjoint sublattices 
and make the d-dimensional analogs of a regular pavement with 2 d dif- 
ferent d-dimensional cubes. In Section 2.2 we describe the first of the 2 d 
steps of our block-decimation procedure. Section 2.3 is the heart of the 
paper; we define there the basic operations that we will perform in order 
to continue our procedure of summation. In Section 2.4 we describe the 
result of the general step of summation. In Section 2.5 we state the main 
result of this paper, namely we define the polymer system we have obtained 
and perform a cluster expansion. 

2.1. N o t a t i o n  and G e o m e t r i c  Cons idera t ions  

Let L be an odd integer, L > ro being the range of interaction. This L 
will be our fundamental length scale; all objects we shall define live on this 
scale. We denote by 2U the original lattice where our spin system is defined. 
In order to introduce our partition of 2U into cubes of side L, we ,use an 
auxiliary lattice 77 d whose points are in one-to-one correspondence with the 
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centers of the cubes of side L in 2~ d. For  x e ;gd we denote by Q(x) the cube 
with center in Lx and side L: Q(x)=-QL(LX)= {y ~ y_a: i[y_ Lx[I <~L- �89 

Moreover, for any subset V of 7/d we set Q(V)=  Ox~vQ(x); in par- 
ticular, 2~ d = Q(Zd). We often identify a set of points V in 7/d with the union 
of the unit cubes centered at the points of V. In this way Q(V) becomes the 
homothetic image of V in 2 d. Now, given a partition of y-d into 2 a disjoint 
sublattices of spacing 2, 7/d = (J~217/~, our partition of 2 d into cubes of 
side L will be given by 

2 d 

~d= ~ Q(y-~) (2.1.1) 
k = l  

Our partition of Z d is defined in the following way. 
Z~ is simply 27/a, i.e., the sublattice of 2 d of spacing 2 centered at the 

origin. For  1 < k ~< 2 a we take Z~ as the sublattice of spacing 2 obtained 
d from Z k_l with a translation by a unit vector ek parallel to one of the 

d lattice directions; namely, the points of Z~ a are nearest neighbors of Z k_l 
in 7/d (see Fig. 1 in the case d =  2). In the sequel we often identify a block 
Q(x) in 2~ d by its center x in 2 d and we denote by p(x) the index of the 
sublattice to which its belongs; more precisely, p: Z d ~ { 1, 2,..., 2 d} is given, 
for xEY- d, by p(x) =j  if x e Y-J. 

Given xey- d, we write ~x=  {ye 7#1 lax-y[i = 1}; D(x)--xw(?x will 
denote the cube in ;yd with center at x and edge 3. More generally, given 
V~Y- d, we write c~V= {x~y-a[dist(x, V)= 1}. 

�9 �9 [] �9 [] �9 

- - - 

[] �9 �9 �9 [] �9 

2 [] N2 Q N2 
1 

2 2 

Fig. 1. 
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Now, if k E 1,..., 2 a, we denote by Fk the family of parallel hyperplanes 
of dimension d - 1 ,  orthogonal to ek+l, passing through points xk of 7/~; 
more precisely, 

Fk= ~ Y(xk+2nek+l;ek+l) (2.1.2) 
n ~ Z  

where xk is an arbitrary point of 7/~ and we have denoted by Y(x; e) the 
hyperplane of dimension d -  1 passing through x and orthogonal to e. We 
denote by Fk + ek + 1 the translate of the set F~ by the vector ek + 1. In this 
way we get the foliation of E a in hyperplanes orthogonal to the direction 
ek+l (see Fig. 2), that is, 

Za= Fk ~ (Fk + ek+l) (2.1.3) 

We always think of the spin configurations in a finite volume A c 2U as 
spin configurations in the whole 2 d by simply extending them to 0 in 7/a\A 
and we use the notation a(A) instead of the more usual aA to denote a spin 
configuration with support in A: 

a(A): E a ~  {0,...,n} 

such that 

a(A)(x)=O, VxeEd\A 

I 
I 

I 
I 

I 
I 

I 
r 

/ '/ ,/ ,/ , / / / / 
/ / / / / 

/ / ! / 

Fk 

F k + ek+ 1 

d = 3  

Fig. 2. 
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Given A and A' subsets of ~d, and a(A) and r(A') two spin configurations, 
we say that they are compatible if a(A c~ A') = z(A c~ A') with the conven- 
tion that if A c~ A '=  ~ ,  they are always compatible. 

Given two compatible configurations a(A) and v(A'), we denote by 
~r(A)/x v(A') the spin configuration which coincides with a (and ~) on 
Ac~A' and with 0 on (A~A' )  ~ and we denote by a(A)v  ~(A') the spin 
configuration which coincides with a on A, T on A', and 0 on (A ~ A')L 

If x e Z~, a spin configuration in Q(x) will be denoted by ~k(x) and a 
spin configuration in Q(Z~) will be simply denoted by ek. 

2.2. The First Step 

Let m be an integer and V m ~ V c  ~ d  the cube of side 2m + 1 centered 
at the origin; we consider a spin system enclosed in the cube 
A = Q(v) c 7/a. For simplicity we consider periodic boundary conditions; it 
will be clear from what follows that with minor changes, any boundary 
condition can be treated. 

Let H(ek(x))-HQ(x)(c~(x)) be the self-energy of a block centered at 
Lx for some xeT~.  If k s  {1 ..... 2d}, we shall write V~= Vc~Z~; 

Hv(ek)-- ~ H(ek(x)) (2.2.1) 
x~  Vk 

is the self-energy of the family of blocks centered on the kth sublattice and 
belonging to Q(V). 

If x e Vk, the interaction energy of a block Q(x) with those neigh- 
boring blocks which have an index strictly bigger than k is given by 

V V 
h = k + l  xh~Oxt~V h 

(2.2.2) 

The corresponding interactions for the volume Vk will be denoted by 

Wv(ek; c~>k)= ~ Wv(~k(X); e>k) (2.2.3) 
X~ Vk 

Using the partition given by (2.1.1), we can write 

2 d 

HA(a(A)) = ~ Hv(C~k) + Wv(O~k; ~>k) (2.2.4) 
k = l  

Now we want to perform a block-decimation procedure by summing 
first on the el variables, then on the e2, and so on. 
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If we denote by Z~k the sum over all configurations in SQ(Ak), we can 
write 

Z A  ~- 2 eHA(cZ(A)) 

~1 ,..., ~2  d 

= 2 eHv(~2d) 2 eHV(::d_~)+ Wv(~2d_~;~>:~_l) 

~ ~2 d-  I 

"" " 2 eHV(~k) + Wv(c'k;~>k) 

"'" 2 eHV(el)+ WV(~Cl;Gr (2 .2 .5 )  

Using the fact that the range of the interaction is smaller than L, we 
get for a fixed configuration cr cr 

y" eHV(~l)+ wv(~;~>~)= I~ Z(Al(Xl);fl~(xl)) (2.2.6) 
~1 x! E V 1 

where 

Z(Al(Xl); fi~(Xl))= Z(Q(AI(x~)), fl(Q(c?Al(Xl))) (2.2.7) 

where Al(xl) = {xl} and ill(x1) is the spin configuration in Q(~?xl); namely 
ill(X1) = {~k(Xk); k/> 2, xk e axt c~ 7/~}. 

As is clear from expression (2.2.6), after the first summation over ~1 
the term Z(Al(xl);fla(xl)) couples the configurations in Q(xl +e2) and 
Q(x~-  e2), giving rise, in such a way, to an effective interaction between 
them. 

In a sense that we are going to make precise, if our finite-size 
factorization property CL holds, this effective interaction becomes small. 

D e f i n i t i o n  2 . 2 . 1 .  G iven  e ~ { -  1, 0, + 1 }, x ~ Z d, and a unit vector 
e parallel to one of the lattice directions, we define a map 

Sex, e " SQ(D(x) ) ~ SQW(~)) (2.2.8) 

in the following way: 

(i) I f e c  { - 1 , 0 ,  +1} and i f z ~  Y(x;e)c~D(x), 

S~x,e(cr(Q(z))) = r (2.2.9) 

(ii) F o r e = 0 a n d z C Y ( x , e ) n D ( x ) ,  

S ~  = 0 (2.2.10) 

where 0 means the 0 configuration in Q(z). 
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(iii) If e ~ { - 1 ,  +1}  and z e Y ( x + e ~ e ; e } c ~ D ( x )  for some 
e l e  { - 1 ,  §  

S~,e(a(Q(z)))={;(Q(z))  if otherwiseel=e (2.2.11) 

Here also 0 means the zero configuration in Q(z). 

We define also, if A is an arbitrary subset of D(x), 

S~  = A c~ Y(x; e) (2.2.12) 

and if ee  { + 1 -  1}, 

S~,eA = A c~ { Y(x, e) u Y(x + ee, e)} (2.2.13) 

Now if Z(A; fl) is a partition function with support A c D(x) and 
boundary condition fi, we define 

Sx,~Z(A, fi) = Z(S  . . . .  S~,efl ) (2.2.14) 

where, also here, we set Z ( ~ ;  f l )= 1. 

Let us now write for any Xl ~ V~ the following trivial identity, where 
for simplicity Z(AI(X~), fil(X~)) will be denoted by Z: 

z)(s;, z) 
Z ~ _  , 1, 2 (1 + qs~) (2.2.15) 

0 S ~,e2 Z 

where 

is the function 

( z ) ( s ~  
qs~, = S + _ - 1 ( 2 . 2 . 1 6 )  

(IO t 
xt" SQ(~xl)  ~ ~ 

We notice that since the dependence on {~2(xl +e2), ~ 2 ( x l -  ez)} in 
+ Z Sx~,~ ~ and S ~ , e Z  is factorized, the only interaction between Q(c2~(x~ + e2) 

and Q(~)(x~- e2) is present in the term ~ .  This is small by virtue of the 
finite-size factorization property (CL). If we disregard the "error terms" 
q51xl, the partition function Z(AI(Xl),  fll(Xl)) becomes factorized and we 
can easily perform the summation over the cq variables so that we can 
repeat the same procedure. In this way we would produce new error terms 
and again we could try to continue the procedure by disregarding them. 
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2.3. The General  S tep  

In each one of our 2 ~ steps we will operate over all sublattices at the 
same time. As will be clear in the following, a step will not merely consist 
in the summation over the actual variables, it will rather consist in the 
following operations that we are going to define: (i) unfolding, (ii) splitting, 
(iii) gluing, and (iv) summation over the spin variables. 

D e f i n i t i o n  2.3.1. Given A 1 and A 2 two subsets of 7/a, a,(ACl) and 
0.2(A~) two compatible configurations, we call unfolding the substitution of 
the left-hand side of the following identity by its right-hand side: 

/ (A1;  0.,) Z(A2; 0.2) 
Z ( A l w A 2 ; 0 .  , v 0 . 2 ) - -  (1 +~b) (2.3.1) 

Z(AI mA2; 0., A 0.2) 

where 

qb=Z(Al  w A2; 0.1 V 0.2) Z(Al  ~A2;  0.1 A 0.2) 

Z(A1;  0.1) Z(A2; 0.2) 
1 (2.3.2) 

In particular, we call unfolding of a partition function Z(A; 0.) at the 
point x in the direction e the previous substitution in the case where 

--  4- + AI - Sx.eA, A2 = S~,,eA, (71 ~" Sx,  e0., 

Now we define the reciprocal operation. 

D e f i n i t i o n  2.3.2. Given A1 and A2 two 
and 0.2(A~) 
substitution: 

subsets of Z a, 0.1(A~) 
two compatible configurations, we call gluing the following 

where 

Z(A1; 31) Z(A2; 32) 
- Z(A 1 vo A2; 0" 1 V 0.2)(1 + ~) 

Z(A lc~A2;a  I A 0"2) 
(2.3.3) 

Z(A1; 31) Z(A2; 0.2) 
q5 = - 1 (2.3.4) 

Z ( A I  ~ A 2 ;  q 1 A 0.2) Z ( A l t . . )  A 2 , f f l  v 0.2) 

In particular, we call gluing at the point x e Z a in the direction e the 
previous substitution in the case where 

and 

A1 c D ( x - e ) c ~  D(x), 

a( (D(x - e) n D(x) )\A1) , 

A 2 c D(x) c~ D(x + e) 

0.'((D(x) ~ D(x + e))\A2) 

are two compatible configurations. 



d-Dimensional Lattice Systems 233 

Let us remark that i f  A , v s A 2 = ~ ,  the gluing is degenerate in 
the sense that Z ( A ~ w A 2 ; ~ v ~ r ' ) = Z ( A I ; ~ r ) Z ( A 2 ; a ' ) ,  05=0, and 
Z(A 1 ~A2;  o" A o")=  1. 

De f in i t i on  2.3.3.  L e t j e  {1 ..... 2 a} and, for any x e  Vj, let A(x)  be 
a subset of D(x) and fl+(x) [resp. /~ (x)] be a spin configuration in 
(D(x) c~ D(x  + e ) ) \A(x )  [-resp. (O(x) c~ D ( x -  e ) ) \A(x )]  for some vector 
e e {ek}2'~=2; we call splitting in the direction e the following substitution 
which is induced by the changes of variable x--+ y = x-t-e: 

[I 
xe Vj 

Z ( A ( x ) c ~ D ( x  +e),  f l+(x)) Z ( A ( x ) c ~ D ( x - e ) ,  fi (x)) 

= H Z ( A ( y  - e) ~ D(y),  fi + (y - e)) Z ( A ( y  + e) ~ D(y),  fi_ (y + e)) 
ye V, 

(2.3.5) 

where i = p ( x  + e) with x e Vj. 

Let us remark that we only perform a splitting in the following cases: 

A(x)  c~ D(x  + e) = S+eA(x)  

A(x)  c~ D(x  - e) = S f , , e A ( x  ) 

fi+ = S+efl, fi_ = Sx, efl for some spin configuration in D ( x ) \ A ( x )  

To show how the previous definitions are useful and to introduce the 
general step, we now perform a summation on the 0{ 2 variables. 

Let us call, starting from Eq. (2.2.6), 

22(~ ~> 3) = ~ I-i eH(~2(x2))+ w(~2(x2);~>2) 
~:2 z2~ v2 

X E Z ( A * ( x ' ) ; f l t ( x 1 ) )  (2 .3 .6)  
X1 ~ VI 

We perform an unfolding at all points xl e V1 in the direction e2 and 
we get 

2 2 ( 0 ~ > 3 ) = E  E et-I(a2(x2))+w(~2(xz>;a>2> 

:~2 x2 ~ V2 

• 1-[ [S+'e2Z(AI(Xl);~I(X*))][Sx"e2Z(A~(Xl);/~I(x'))] 
~ ~ ~ s ~ Z ( A  ~ ( x , ) ; / h ( x ,  )) 

x [ I  (1 +~*x~) (2.3.7) 
Xl ~ VI 
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Now we perform a splitting in the direction e2, that is, we write 

[I  [Sf .e2Z(Al(xl);  fll(Xl))][gxl,e2Z(Al(Xl), fll(X1))] 
Xl E V I 

[ I  + z = [Sxz_e2.e 2 (A l (x2-e2) ; f l l ( x2 -e2) ) ]  
x2 ~ V2 

x [Sx2+e2,e2Z(Ax(x 2 + e2); fll(x2 + e2))] (2.3.8) 

where we have used 7/~=21a+ e2. 
If all the ~b 1 were equal to zero, by construction, we would obtain XI  

= E H eH(~2(x2))+ W ( ~ 2 ( x 2 ) ; ~ > 2 )  

~2 x 2  ~ V2 

x 1-I [Sx + e2,ezZ(Al(x2-e2);fll(x2--e2))] 
x2 ~ V2 

X [Sx2+e2,e2Z(A,(x 2 + e2); ill(x2 + e2))] 

X H [S~ 1 
X 1 e V 1 

= H [S~ -1 
Xl ~ V, 

X H I E eH(~ 

x 2 G V 2 [ - g 2 ( x 2 )  

+ Z x [Sx2_e2,e 2 (A , (xz -e2) ;  f i , (x2-e2))]  

X [SL+e2,e2Z(Al(X2-i-e2);fll(x2+e2))]} (2.3.9) 

where we have used the fact that S~ ill(x1)) does not depend 
on 0~ 2 . 

It can be easily checked that each factor in the last product in the 
rhs of Eq. (2.3.9) is nothing but the partition function with support 
Q({x2 } w {x2 + e2 } u {x2 - e2 } ) - Q(A 2(x2)) and boundary conditions 

5a(Q(y)) if y~Ox2, p(y)>~3 
lo otherwise 

Therefore, by setting 

Z(A2(xz); fl2(Xz)) = Z(Q(Az(x2)); flz(X2)) 
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we get, by neglecting the qS's, 

In the real case where ~b~x~ 
factor 

I~ Z(A2(x2); f12(x2)) 
x 2 ~ V 2 

x I~ [S~ f l , (Xl ) ) ] - i  (2.3.10) 
Xl E VI 

is nonzero, by multiplying and dividing by the 

1-[ Z(A2(x2); flz(X2)) 
x 2 E V 2 

we get 

22(~>3) = 17 Z(A2(x2);fl2(x2)) 
x 2 ~  1/2 

x I-[ [S~ 1 
x I ~ V I 

X ~ a > 2  

x I ~ V 1 

where v2~>2 is the normalized product measure on SQ(v2) defined by 

v2>2(f) = Z f(~2) Y 2 : ~ > 2 ( ~ 2 )  

~2 

if f :  Sotv2 ~ ~ ~ with 

x 2  ~ I/2 

S+_e>e2Z(AI(X2 - e2); ill(X2 - e2)) 

x SL+ e2.~2Z(Al(X2 + e2); fll(xz + e2)) 
x (2.3.12) 

Z(A2(x2); ~2(x~) ) 

Let us now describe the general step. We give here a rough description 
of the sequence of operations that we perform without giving exact defini- 
tions and without any proof. The precise statements will be contained in 
the rest of the present section and in Section 3. 

Our procedure can be described as a sort of "cellular automaton" in 
the sense that at each time we apply simultaneously at each site (of Z a, the 
lattice that characterizes the centers of the cubes of our partition) a trans- 
formation different from site to site. The variables present at each site, at 
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each any given time, will be a volume, a boundary condition, and a 
variable taking value in { - 1 ,  + 1 }. The first two correspond respectively 
to the support and to the boundary condition of a partition function and 
the third one will say if this partition function is raised to be power - 1  or 
+ 1. The criterion for updating our variables in a given site at a given time 
will be local, in the sense that it will only depend on the variables on the 
neighboring sites, and nonstationary in the sense that it will depend 
explicitly on time. This "time evolution" corresponds to writing the same 
quantity (the global partition function) in different ways by summing at 
each time over a new class of variables corresponding to one of the 2 e 
sublattices of the partition (2.1.1). 

After the summations on the spin configuration c~ k ..... cq for some 
k ~> 2, we claim to have produced beyond other terms a product of the form 

[I ~ 
x~V 

where ek(X) e { + 1, -- 1 } and Zk(x )  are partition functions whose supports 
are indexed by x. For simplicity we ignore for the moment the important 
question of boundary conditions. 

Moreover, some of the previous partition functions could be equal to 
one if their support is the empty set (if k = 2 ,  this corresponds to all 
X ~ V 1 ~ V2). This is a spurious effect which occurs at the beginning of our 
procedure of summation, but there exists an integer ko e { 1,..., 2 a} such that 
if k > ko, all the partition functions are different from 1. 

Now, for any x e Fk c~ V, we perform an unfolding at the point x in the 
direction ek+l. If Z k ( x ) =  1, this is a completely trivial operation. Let us 
remark that we perform an unfolding even in the case when ~x(X) = - 1. 

Then we perform a splitting in the direction ek +a. In particular, at this 
stage we get, ignoring the error terms, for any x E Fk + ek+l a factor like 

[2~ (x) (x)] 

where the Z + ( x ) Z f ( x )  comes from the previous splitting, whereas the 
Z~  are already present, coming from the previous steps. In some cases 
2o=1. 

The main difficulty of our construction is to realize that at this stage 
we are in the right situation to perform a gluing at all points x ~ Fk + ek + l, 
namely, we have to have obtained at each point an expression like 

Z(A1)  Z (A2)~  +-1 

with analogous compatibility conditions for the boundary conditions. In 
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the following subsection we will introduce tools that allow us to prove this 
nontrivial fact. Now, assuming that it is possible, we perform a gluing at 
all points x ~ F k + ek+1 c~ V, then we perform the summation over the spin 
configurations ek+l.  An important remark at this stage is that if one 
ignores the error terms, the dependence on ek+~ variables is factorized so 
that one can perform independently the sum over ak+l(Xk+l) for any 
xk+1~77~+1, and get in this way, for any xk+leT/~+ 1, a new partition 
function. We stress that the effect of the unfolding, splitting, and gluing is 
also present in the other sublattices. 

What we really do, taking into account that r ~ 0, is similar to what 
we did to obtain (2.3.11), namely, we multiply and divide by the proper 
normalization factor and we get, in this way, a normalized product 
measure over ~k + ~ variables. 

2.4. The Result of a Generic Step 

In this subsection we define all supports and boundary conditions of 
the partition functions together with the measures and error terms that we 
have obtained at the k th  step of our procedure. 

The following definition corresponds, when k = 2, to the first term on 
the right-hand side of Eq. (2.3.11). 

D e f i n i t i o n  2.4.1.  Given k e 1, 2, 3 ..... 2 a, we define for any xk e ?Z~ 

Ak(xk) = {x 6 D(xk); p(x) <-G k} 
(2.4.1) 

8k(Xk) = {xe a(xk); p(x) >k} 

Given a generic spin configuration a, we define 

flk(Xk)= fa(Q(B~(xk))) in Q(Bk(xk) ) (2.4.2) 
otherwise 

~k(Xk) = + 1 

See Fig. 3 for the case k = 3, d =  3 and Fig. 4 for the case k = 5, d--3 .  
Now we want to define the support, the boundary conditions of all 

partition functions we have produced, together with the exponent at which 
they arise. 

Given k ~ 2,..., 2 d, let Z d(k) be the sublattice of Z J of dimension d(k) 
with spacing 1 centered at the origin, generated by the vectors e2 ..... e~. 
We set 

2d(k) 

j = l  
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Notice that M a =  Z d. In our previous description of the general step the 
points x which belong to 2 d \ M  d(kl are precisely those for which Z = 1. 

Let ul,..., ua(k~ be a base of vectors, parallel to the axis of 2 ~, 
generating 7/d(k). 

Now, given j e  {1, 2 ..... 2a(k)}, let d(k, j)  be the distance between the 
two sublattices Z~ and ZJ induced by the following metric on 
zd: Ux-yI l~=E/a=l  ]xi--yil. Moreover, we can find among ul,..., Ud(k) a 
family of orthogonal vectors {vl}l= x,...,a(kd) together with a family of signs 
{el}z=1,...,a(k,j) such that 

d(k, j) 
zJ=z;+ Z 

l = l  

This will be denoted by a d Zj = 2 k + 7(k, j)  and we write IT(k, J)l = d(k, j). 
We say that a vector e is orthogonal to ~:(k, j) if e • vt Vle {1 ..... IT(k, J)l }; 
this will be denoted by e L 7(k, j). 

Defini t ion 2.4.2. Given k e  1,..., 2 d a n d j e  {1, 2 ..... 2dCk)}, we define 

p/(k,j)l 

Y(x; 7(k, j)) = (~ Y(x; vl) (2.4.3) 
l=-1 

Namely, Y(x; 7(k, j)) is the affine hyperplane of codimension /7(k, J)l 
orthogonal to the vectors v~ ..... vlT(~,j)l passing through x. 

Now, if Z(A~(x), ilk(x)) ~(~) is the partition function that appears at x 
after k summations, we have the following. 

D e f i n i t i o n  2.4.3. Given k~l , . . . ,2  a and xeOxk ,  x k ~ - ~  with 
p(x) = j  for some j e  1,..., 2 a, we define 

A k ( x ) = ~  , 
(Ak(xk] c~ Y(x; 7(k, j)) 

Bk(x) = Bk(Xk) ~ Y(x; 7(k, j)) 

if p(x) > 2 d(k) 
(2.4.4) 

otherwise 

Given a generic spin configuration a, we write 

 not erw so  .. . t'4') 
~k(x) = ( -  1) I~(k'J)l 

See Fig. 5 for the case k =  3, j =  1, 2, d =  3; and Fig. 6 for the case k =  5, 
j - -4 ,  3, 2, 1, d =  3. 

Now we define the normalized measures obtained in our process of 
summation. 

822/59/1-2-16 
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A3(Xl) 

A3(x 2) 

1 

?(3A) 

~/(3,2) 

3 

�9 x1 �9 x2 

Fig. 5. 

Defini t ion 2.4.4. Given ke2 ,3 , . . . , 2  e and a spin configuration 
k 2d Vj, we define the normalized Bernoulli measure v~> k ~k+ l~ ' "~  (X2d o n  Q ) j = k + l  

on S vk by 

where f :  S v~ ~ ~, 

and for any xk e V~, 

v~k~(~(x~)) = 

We denote by 

v~k( f )  = ~ f(~k) v~>~(~k) (2.4.6) 
~k 

"~k(~k) = 1] .~r 
Xk ~ Vk 

eH(ak(xk)} + W(~k(xk); Zk(Xk)) 

Z(Ak(x~)\xk; fl~(Xk)) Z(&(X~); ~(X~)) 

p k + l  vk 
~>k+l o ~>k 

the measure on Svk+l,~ vk with weights 
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As(x 4) 

t 4 
i5 ~5,4) 

A5(• 3) 

A5(x 2) 

O 

3 / -  
I4 3t(5,2) 
5 

As(xl) 
1 

[ ]  Xl O X2 ~ X 3 ~ m  X 4 

Fig. 6. 

We emphasize that the weights k v=>~(c~k) depend on ek+ 1 and therefore 
V=~k+lk +1 o V k~ is not a product measure, but rather a composition of the two 
measures. 

Now we define the error terms we produce when we perform an 
unfolding [Eq. (2.4.7)] or a gluing [Eq. (2.4.8)]. 

D e f i n i t i o n  2.4.5.  For  any k ~ l , . . . ,  2 d and x ~ Fk we define 

k _ . F Z ( A k ( x ) ;  i l k ( x ) )  Z ( A k +  l(X); i lk+ I(X)) q~k'{x) 
q5 x - - -  1 + k| Sx ,  i l k ( x ) )  S2 , , e~+ ,Z (Ak (x ) ;  flk(x))j  (2.4.7) 
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If x e F ~  +e~+l and xC Vk+l, 

cp~= - 1 + [Z(Ak(x); ilk(X)) Z(Ak + I(X); flk+l(X))] 

X [S+_ek+,,~k+Z(Ak(X -- e~+ 1); fik(x -- ek+ 1)) 

x S]+ek+,.~k+,Z(Ak(x + ek+ 1); fik(x + ek+ 1))] -ak(-~) (2.4.8) 

If x e  Vk+~, Z(Ak+l(X);flk+l(X)) has to be replaced by Z(Ak+l(X) \{x};  
flk+l(x) v c~k+l(X)) in Eq. (2.4.8). 

2.5. The  M a i n  Resul t  

Now we can state one of the two main propositions of this section, 
namely the one which corresponds to the "polymerization." 

P r o p o s i t i o n  2 .5 .1 .  The following formula holds: 

ZAm =jl~=l ~ [Z(Az~(Xj), 0 ) ]  ~2~(x~) 
�9 = ~j~vj 

V ~176 ' ' "  ~ 
1 j~<2d(k) xjeVj 

(2.5.1) 

The proof of Proposition 2.5.1 will be given in Section 3. 
Now we are ready to write our partition function in terms of a gas of 

polymers whose only interaction is a hard-core exclusion. 
For  k~ {1 ..... 2 d} and j<~2 d~k) let us define the following family of 

points: 

C~(x) = ~Bk(x) if x e Fk (2.5.2) 
(Bk+l(x)  if x E F k + e k + l  

We define also 

C~(x) = U { Y e 3 ( x + e l e k + l ) , P ( Y ) > k + l }  (2.5.3) 
ale{ 1, +1} 

and more generally, if l is an integer, 1 < l < 2 a -  k, 

C f ( x ) - -  U {ye63(x--}.-glek+l-k - ... + e , e k + z ) , p ( y ) > k + l }  

al ...... t~(-1.+l}l (2.5.4) 

For a given k e 1 ..... 2 d and x e 7/d, we call a C ~ bond the following set of 
points: 

2 d k 

Ck(x) = U Cf(x) 
l = 0  
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A bond l will be always a Ck(x )  bond for some k e 1,..., 2 d and x e Z a. We 
say that two bonds ll and 12 are connected if ll c~ 12 r ~ .  A polymer R is 
a set of bonds l~,..., Ip that is connected in the following sense: VU, 
1 <<, i < j < ~ p ,  there exists a chain of connected bonds in R joining l~ to lj. 
For  R = Ii ..... lp, we set ]R] =p.  The support /~  of a polymer R = l~ ..... lp is 
R :  Uf=, l~. 

We call ~ the set of all possible polymers with arbitrary support in 7/d. 
NA is the set of all polymers such that /~ c A. Two polymers R~, Rj are said 
to be compatible if/~i c~/~j = ~ ;  otherwise they are called incompatible. 

Given a polymer R ~ ~:  R = Ck~(x~),..., C~u we call the activity of 
R the quantity 

~ ( R )  ~ ~ I . . . .  v ~ ~ ~--- y o V~>2 d I o ~>2 
J 

(2.5.5) 

We can write 

ZA m 
2 d 

H i = ,  Hxj~  vj [Z(A2~(x j ) ;  0)] ~2d~) 
= 1 + 2 2 (I ;(R,) 

n>~l RI,-., R n E ~ A  m i=1  
(2.5.6) 

Then it is sufficient to divide our partition function by a suitable product 
of local terms in order to get the partition function of a gas of polymers 
whose only interaction is a hard-core exclusion. The denominator on the 
left-hand side of Eq. (2.5.6) represents the partition function of the 
"reference system," which is then given by a suitable set of noninteracting 
finite-volume systems. 

Proposi t ion  2.5.2. Let 

Let 

n >~ l RI ,..., Rn E ,~' A t = l 

(2.5.7) 

1 
@ T ( R 1  . . . . .  R n ) : - -  2 (__ 1 ) (#edg  . . . .  g) ( 2 . 5 . 8 )  

n! 
g ~ G(R1,..., Rn) 

where G(R1 ..... Rn) is the set of connected graphs with n vertices (1,..., n) 
and edges i, j corresponding to pairs Ri, Rj such that/~i  c~/~j r ~Z~ with the 
convention that if G is empty, the sum is equal to zero, and if n = 1, the 
sum is one. If 

Iff(R)/< ~ (2.5.9) 
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with 
2 < [3(2 a+ 1 "t- 1)] -a  2 -2%-4  

then (i) there exists a positive constant C(2, d) such that 

(pT(R1,..., Rn) f i  I~(Ri)l ~< C(2, d) e Im I(( i) l  
RI,..., R n ~ , ~ l  i =  1 

3 R i  = R 

and (ii) in addition, 

Proof. 

(2.5.10) 

(2.5.11) 

Z A = e x p  [ E E 
n > ~ l  R I , . . . , R n  

~ , c A  

q~T(R~ ..... R.)  f i  ( (R,)]  
i = 1  

(2.5.12) 

The proof can be obtained by the standard methods of the 
cluster expansion. We follow the lines of refs. 7 and 9, to which we refer for 
details. Let N be the maximal cardinality of a bond Ck(x). For any e > 1, 
we get, from Eq. (2.5.9), 

]((R)I<<.(O~2)IRII(~)I/N]NR 

We can write, as in ref. 7, 

with 

We have 

I((R)I <~l~l 1~ ~o~ (2.5.14) 
c ~ R  

~. (p c <~ NMoG =- S 
C ~ O  

where M is the number of different bonds and we easily get M ~< 2 d. 2 d. 
Let us remark that if E is an upper bound for 

sup sup diam C(x)  
k - - l , _ . , 2  d X E Z d 

(2.5.16) 
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then 

N <  (3E) a (2.5.17) 

On the other hand, it is easy to check that diam C~(0) ~> diam Cko(x), 
Vx e Z d, Vk = 1,...,2 a, and, since diamC~ ~< 2 + d i a m C ~ + ~  for 
/ = 0  ..... 2d- - l ,  we get diamCk(x)<~2a+l+l. Thus, we can choose 
E = 2 a+ 1 + 1. Now, by Lemma 1 of ref. 7, we get the result if 

namely 

1 
exp S <  [V/7 ( 2 _  x /~)]  (2.5.18) 

1/2N 

exp(NM~2) < (2.5.19) O~ - -  ( 1 / ~ )  1/2N 

By choosing c~ = e 2, one easily gets the final sufficient condition for the 
convergence: 

1 
213(2a+1+ 1)]d22a<Ta | (2.5.20) 

Proposition 2.5.3. If 3L such that condition eL of the introduc- 
tion is satisfied, then, for the corresponding system of polymers, the 
following estimate holds: 

I~(R)I ~R~ (2.5.21) 

with 

2 = [-3(2 a+l + 1)] -a2-2ae 4 (2.5.22) 

Proof. We write 

20 = sup sup sup I~kxj 
k = 1,..., 2 d j = 1,..., 2 d(kl cr(Q(C~o(Xj))) 

k k y ~ Z J,  where xj is any point in 77J (by translation invariance, ~x = q~y Vx, 
Vj = 1,..., 2d). 

Since all the v~>e are normalized measures, we immediately get the 
result with 2o in place of 2. 

For x e Z d, let A c D(x) and let Z(A; fl) be the partition function in 
Q(A) with given boundary conditions fle So(o(x))\O(At. For a given unit 
vector e a straightforward calculation shows that 
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Z(A; fl) S~ fl) 
S+,Z(A; fl) S ~ Z ( A ;  fl) 

I*A+ \ + 
a_ E SQ(Ac~ Y(x-e;e}) 
a+ E SQ(Ac~ Y(x+e;e)) 

Z(Ao; fi_ v r;_,flo, fl+ v a+)Z(Ao;O, fio, O ) 
X 

Z(Ao; fl_ v a ,flo, O) Z(Ao;O, flo, fl+ v a+) 
(2.5.23) 

where 

A+ =Ac~ Y(x+e;e) ,  A o = A ~  Y(x;e) 

and SA~~ are normalized Gibbs measures in A+ with boundary 
conditions fl-flo and fi+flo, respectively, from which, if CL is true, one 
immediately gets the result. 

Condit ion C~.. For a given L, let 

2 ' =  sup s u p  I I 1  2 y2d(o~2d(X2d)) ' '"  
k= 1,..., 2 d j=1,. . . ,2 d(k) Lx2dc ck(xy)r~ zdd ~2d(x2 d) 

])k+l [0~ (X  ~ ~)k p l  I/p l-I X ~>k+l~ k+l~ k+l , ,  [ xj[ (2.5.24) 
k d J Xk+l~C (Xy )~k+ I ~k+l(Xk+l) 

where xj is any point of 77J, and p is an upper bound for the maximum 
number of C k bonds that can pass through a point. A possible choice is 

p = 22d[3(2 d+ a + 1)]d (2.5.25) 

We say that condition C~. is satisfied if 

2' ~< [3(2 d+ 1 + 1)] -d 2-2de-4 (2.5.26) 

P r o p o s i t i o n  2.5.4. If 3L such that condition C2 is satisfied, then 
for the corresponding system of polymers the following estimate holds: 

IC(R)I ~ ,V R~ (2.5.27) 

with 

2 = [ 3 ( 2 J + 1 + 1 ) ]  d 2 2d e 4 (2.5.28) 

Proof. The proof will be given in the Appendix. 
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R e m a r k  2.1. Following Dobrushin and Shlosman, (6) we define for 
A c  g ~ -  d, IVI < ~,  l~E&roV, 

qv,~(~(3)r/~)= ~ ~4(~(w)) (2.5.29) 
,7(V\3) 

[-see Eq. (1.3)]. 
Moreover, if ql and q2 are probability measures on S~, we set 

1 
Var(ql, q2)=~  2 [ql(Cr(A))-q2(a(A))[ 

Let fix, f12 be configurations in 0r0 V such that 

fll(X)=fl2(X), VX ~lff(~roV (2.5.30) 

Now suppose that the following condition C~ 's is satisfied. 

Condi t ion D,S C t . For some positive k and 7 we can find an L such 
that, if V is any subset of PL, j, for some j e  { 1, 2 ..... d} we have, VA c V, 

Var(qv.3(-d fi~), qv,~(.[fl2))<<.Kexp[--7 dist(t, A)] (2.5.31) 

Then, from Corollary 3.2, Eqs. (3.9) and (3.14) of ref. 1, it is easy to check 
that 

Z(J)(A; a_, or+, ~) Z(J)(A; O, O, r) 

~< 2e41r,lr(3L)Z(d 1) rZKe--eL (2.5.32) 

where 

1 
II.ll = sup sup ]u(o(x))[ . -  

x~O ~(x) T 

In ref. 6 the authors introduce, among others, the following. 

C o n s t r u c t i v e  C o n d i t i o n  IIl.e. (6) For some positive K and 7, for 
any region V c Y  a such that (diam V)/3 <L(K, 7, d), VA c V, Vfll, f12 
satisfying (2.5.30), Eq. (2.5.31) is satisfied. 

D,S Of course, the above condition implies condition C L . 
Then, if, for a given potential U, Condition IIIc of ref. 6 is satisfied 

with L(K, V, d) given by 

2e411"llrZ(3L)2(a-X) Ke-~L[-3(2a+l + l)]a22ae4<l (2.5.33) 

our Theorem 1.1 implies that U is completely analytic (see ref. 6). 
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We have thus obtained an alternative proof of Theorem 4.2 of ref. 6. 
We recall that the condition ref. 6 [Eq. (4.1)] analogous to our (2.5.32) is 

yL'~ 
I-(K+ 1)(3L + 2ro + 1)d] 2~+3 2dexp -x---;| < 1 (2.5.34) 

3 a /  

3. PROOF OF PROPOSITION 2.5.1 

We will prove Proposition 2.5.1 by recurrence on the number of steps 
that we have performed. 

Let us define a quantity ZA(t), where t is an integer variable which can 
be considered as a time, by the following formula if t e 2 , . ,  2a: 

Z~(t  = k ) =  ~ e H~(~2~) y~ e/t~2d-~+ w~(~d_x,~) ... 
~2 d ~2 d 1 

X E eHV(~k+l)+ Wv(ak+l,~>k+~) 

~k+l 

• 1-I ~ 

x E V  

1 o .  2 1-I (3.o) V~>kO V~>k_ I " '  o v a >  2 
, =  k 1 j<~2 d(k') x j~  Vj 

where the set Ak(X) is defined in Eqs. (2.4.1) and (2.4.4) and the boundary 
condition ilk(x) is defined according to Eqs. (2.4.2) and (2.4.5), where the 
generic spin configuration ~ is nothing but C~k+l ..... ~2~. 

In particular, it follows immediately from E q .  (2.3.11) that 
ZA(t = 2 ) = Z  A. Now it is clear that, if we prove that Z A ( t = k  ) = Z A  
implies ZA(t = k + 1)=  ZA, we have proved by recurrence Proposition 2.5.1 
by taking k = 2 d. 

We start by proving some lemmas. 

k e m m a  3.1. For any x ~ F k  we have 

SO, ek+~Z(Ak(X); ilk(X)) = Z(Ak + l(x); flk + I(X)) (3.1) 

o A - Proof. We have first to prove that S~,e~+~ k(x)--Ak+I(X) ,  namely 

Ak(X)~  Y(x, ek + l )=  Ak + l(X) 

Let Xk be a point of 7/~ such that xeOxk .  From Definition 2.4.1, since 
xk + ek+ 1 -- Xk+ 1 e 7/~+ ~ and Y(x; ek+ 1)~Xk+ 1, we immediately get 

Ak(Xk) n Y(x; ek+ 1) = Ak+ l(Xk+ 1) n Y(X; ek+ 1) (3.2) 
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Let j = p ( x ) ;  it is clear that we can find 7(k,j)  and 7(k+ 1, j)  such that 
(i) 7(k+ 1 , j ) =  - e k + l  + y ( k , j ) ' a n d  (ii) 7(k, j) .t_ ek+l. 

By intersecting both sides of Eq. (3.2) with Y(x,  7(k, j)) and using 
Definition 2.4.3, we get 

Ak(x )  ~ Y(x; ek+ 1) = Ak+ 1(x) 

o x To prove Sx, ek~lflk ( ) =  ilk+ I(X), we proceed in a similar way starting from 
Eqs. (2.4.2) and (2.4.5). 

k e m m a  3.2. For any x e F k  we have 

Sx+ek+lAk(x)c~S~+2ek~.e~+~Ak(x+2eg+l)=Ak(x+ek+l)  (3.3) 

In particular, i fp(x + ek+ 1) > 2d(k), 

Sx+ek+Ak(x) c~ S~+2ek+~.~k+lA~(x + 2ek+ 1) = Z (3.4) 

Moreover, we have 

ek(x + ek +1) = - ek(x) = - ek(x + 2ek + 1) (3.5) 

Finally, 

S~+ek+~flk(x) and S~+ 2ek+~,~k+~fik(x + Zek + l) (3.6) 

coincide on Y(x  + ek + 1 ; ek + 1). 

ProoL Let us prove (3.3). Since x~/~k, it is easy to check that 

Y ( x + e k + l ; e k + l )  = Y ( x k + e k + l ; e k + L )  (3.7) 

where xk ~ Z~ ~ Fk is such that x ~ ~xk. Moreover, if e is any unit vector 
orthogonal to ek+ ~, we have 

Y(x,  e) = Y(x  + ek+l ; e) = Y(x  + 2ek+ i; e) (3.8) 

Therefore, i f j = p ( x ) ,  since any 7(k, j)  is orthogonal to ek+ 1, we get 

Y ( x ; 7 ( k , j ) ) =  Y ( x + e k + l ; 7 ( k , j ) )  = Y ( x + Z e k + l ; 7 ( k , j )  ) (3.9) 

Consider the case x = xk ~ Z~, since 

D(xk  + 2ek + 1 ) ~ Y(x~ + e k + 1 ; ek + 2) = D(xk)  c~ Y(xx + e k + ~ ; e~ + ~) 

from Eq. (2.4.1) one gets 

A~(x~) ~ Y(x~ + e~ + l ; e~ + 2) = A~(x~ + 2e~) ~ Y(x~ + e~ + ~; e~+~) 
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And then, since 

S+ ek+2Ak(xk) ~ S L  + 2ek+t,e~+2Ak(x + 2ek+ 1) 

-- Ak(xk)  C~ Y(xk + ek + 1 ; ek + 1) n Ak(xk + 2ek + ~) 

= A~(xk) c~ Y ( x k + e k + l ; e k + l )  (3.10) 

Eq. (3.3) is proven for xe7/~. Now, from Eqs. (3.7), (3.9), and (2.4.4) we 
get the proof of Eq. (3.3) for the general case. 

Notice that if p ( x k + e k + l ) > 2  d(k), then both side of Eq. (3.10) are 
empty. 

By similar arguments we prove (3.6). Finally, Eq. (3.5) is a direct 
consequence of the definition of e~,(x). 

L e m m a  3.3. For any x ~ F k, p(x)  r k, we have 

S + e ~ A k ( x )  w S~+2e~+~.~k+lAk(x + 2ek+ 1) = Ak+ l(x + ek+ 1) (3.11) 

Sx, e~+lflk X) V Sx+z~+l.ek+lf l1,(x+2ek+l)=flk+l(X+el,+l)  (3.12) 

If p(x)  = k, i.e., x = xk e 2~, 

Sx+~k+lAk(x) u S~+ 2ek+l,e~+iAk(x + 2ek+ ~) 

=Ak+~(x  + e k + ~ ) \ { x  +ek+~} (3.13) 

=/3k+ ~(x + ek+ 1) (3.14) 

Proof. We have already proven [see Eq. (3.2)] that for x ~ F k  

Ak+l(Xk+l)~ Y(x ;ek+l )=Ak(x~ )c~  Y(x;e~+l)  (3.15) 

and by a similar argument we have also 

Ak+l(Xk +ek+l)(3 Y(x  + 2ek+l; ek+l) 

= Ak(xk + 2e~, + ~ ) r~ Y(x  + 2ek + 1 ; ek + 1) (3.16) 

It follows from Eq. (2.4.1) that 

[A~(xk) u Ak(xk + 2ek+ ~)] r~ Y(x~, + ek + 1; e~, + 1) 

= [A~+~(x~+e~,+l)r~ Y ( x k + e ~ + ~ ; e ~ + x ) ] \ { x k + e k + l }  (3.17) 

Now putting together Eqs. (3.15) (3.17), one gets Eq. (3.13). Equation 
(3.11) follows from Eq. (3.13) and (3.9). By similar arguments, one gets the 
statements (3.12) and (3.14) relative to the boundary conditions. 
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Let us first consider the case where p ( x k + e k +  1)<~ 2d~k~" We start  by 
writing, for x ~ Fk,  the following identiy cor responding  to the unfolding: 

[ Z (Ak(x ) ;  i lk(x))] ~k(x) 

= (1 + 

F [S+ek+' Z(Ak(x ) ;  i lk(x))]  [S~k+ 1Z(Ak(x);  f lk(X))]]  ~k(X~ 
(3.18) 

• I_ s ~  ek+ 

where q~k x is defined in Eq. (2.4.7). 
Then  we per form a splitting, namely  we associate the te rm 

(1 + ~ ) [ S ~  f lk(x))]  ~k(~ (3.19) 

to x e Fk and, for e = { -  1, 1 }, we associate the term 

[S;,~k_~ Z(A~(x) ;  ilk(X))] ~k(~) (3.20) 

to X + eek+ ~. Not ice  that  x + ee k+ ~ s Fk. Therefore,  after splitting, the 
following quantit ies are associated to x ~ F k + ek + 1 : 

[Z(Ak(x ) ; /3k (x ) ) ]  ' ~ )  (3.21) 

a lready present,  and 

[ S+_ek+l,~k+lZ(A~(x -- e~ + ,); [3~(x -- ek + l ) ) ]  ~k(X- ~k-'~ 
(3.22) 

[Sx +ek+l,ek+iZ(Ak(X + ek + 1); flk(x + ek + ~))]~k~x+ ek+~) 

coming f rom the splitting in the direction e k +~ at x _  e~ +~. 
N o w  we deduce f rom L e m m a  3.2 that  the expression that  we have so 

far is such that  we can per form the gluing on F~ + e k +1. 
Let us write the following identities, which, by L e m m a  3.3 

and Eq. (3.5), since ~k (x )=  - e k + ~ ,  cor respond  to gluing. Fo r  
x ~ F k  +ek:  p ( x ) r  + 1, 

[Z(A~(x);  fl~(x))] ~k~) 

x [ S  + ~k ~ i Z ( A k ( x - - e k + ~ ) ; f l ~ ( x - - e ~ + l ) )  
- -  + 1 ~  k +  

x S~+ ek+~.e~Z(A~(x + e~ + 1); flx(x + e~ + ~))]~(x) 

= [Z(A~+ ~(x), ilk+ ~(x))] ~+'t~) (1 + ~ )  (3.23) 
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For x: p(x) = k + 1 

k <  

• [Sx + ek+ 1,ek+l Z(Ak(x - ek + 1 ); flk(X -- ek + 1)) 

X S x +  e k + l , e k + Z ( m k ( X  "[- ek+ 1); flk(x + ek+ 1)) ' ]  ~k(x) 

= [Z(A~ + l (x) \{x};  ilk+ l(x) v ~g+ l(x))]  "k+~(~) (1 + r (3.24) 

Now it is immediate to check that in all the sublattices Z J, j<~2 d(k), 
j # k + 1, the new partition functions we have obtained after unfolding on 
irk and splitting and gluing on Fk + ek+l are the ones corresponding to 
Z A ( t = k +  1). 

We notice at this point that these last partition functions do not 
depend on the configuration variables ~k+l. This follows from the 
lbllowing facts: 

1. After the splitting at x eF~ there are boundary conditions 
S~ which (see Definition 2.2.1) do not contain ~k+l in the sense 
that 

flk(X)[rk+~+,=O and then /~k(X)[v~+~=0 

2. At any x e Fk + ek + ~ with p(x) # k + 1, by Lemma 3.3 there are 
boundary conditions fl~+l(X). 

Looking at Definition 2.4.3, we see that flk+l(x)[ v~+~ = 0  and so also 
flk+~(x) do not contain ~k+l. We conclude that at this point the only 
dependence on ~k+ I(X), for x ~ Vk +1, besides the one present in the error 
terms, is given by the unnormalized (Bernoulli) measure: 

=e t4(~k+l(x~)+ W(~k+t(~)'~>k+OZ(Ak + ,(X)\ {X} ; flk + l(X) V ~Xk+,(X ) (3.25) 

We can write 

Z A ( t = k ) = Y  eU~(~) ~ e~I~(~-~)+w~(,~a.,~-,) 
0"2 d ~2 d- 1 

X �9 �9 . E eHA(~k+2)+ WA(~176 

~k+2 

x ~I f I  [Z(Ak(xj); fl~(xj))] ~xj) 
j r  x j e V j  
j ~< 2d(k) 

~k• Xk+ l~Vk •  

k +  

j 4 2  d(k) xj~ V] 

- H H (3.26t X Yo~>k 6 " '  o Y ~ >  2 
k 1 j~<2 d(k) xjeV~ 
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If we divide the expression (3.30) by the normalization factor 

Z ( &  + ~(x); 3k + ~(x))  

,r + l[  . we get nothing but the measure ~k+~t~k+l(X)) (see Definition 2.21). 
Then, to conclude the proof of Proposition 2.5.1 for the case 

d(k+ 1)=d(k)  it is sufficient to multiply and divide the rhs of Eq. (3.31) 
by 

l'-I Z ( A k + l ( X k + l ) ; f l k + l ( X k + l ) )  ( 3 . 2 7 )  

Xk+lE Vk+l 

and finally to perform the sum over the ek +~ variables. Looking at expres- 
sion (3.26), it is easy to convince oneself that ZA(t = k )=  ZA(t = k + 1). 

The case when p(xk + ek + ~ ) > 2 a(k~ involves only minor changes and is 
left to the reader. 

A P P E N D I X .  PROOF OF P R O P O S I T I O N  2.5.4 

Let R=Ck~(xl)  . . . . .  Ckq(xq), q= [R], be a generic polymer; then if 
p =-p(d) is given by Eq. (2.5.25), we want to prove the following inequality: 

q 

j = 1  

from which we get, using C2 the desired result: 

]((R)t ~< {r3(2d+1"+" 1)]--d2--2de--4}lRI 

We write I = { 1,..., q } and, if x E R, 

I(x) = { j e / / ~ ( x j )  ~ x} 

I(x ~) = I \ I ( x )  

Let us write 

j ~ l  

~(R, x)= 1-I 1~51 
j e l ( x )  

~ ( i ,  x c) = y [  105kx~l 
j e I(x') 

If z = z(R) = Inf(j/> 2//~ c~ Z a r 0), then we get 

. . . .  ~c v2~o . ov~>2(~(R) )= v2~o . o v ~ ( ~ ( R ) )  
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Let 7/~c~/~= {Yl ..... YJv} with 
measure, we can write 

v:>,(~(R)) = H 

If we write 

Olivieri and Picco 

N--IZ~c~/~l. Since v;>, is a product 

v;>~(~(x))(~(R, y~)) 
x ~  v~ ~ ( x )  
x ~  y l  

x y~ v;>~(~(y~)) ~(R, y~) 
c~(yl )  

71/p 
l ~kj Pl qskj' Yl ~,(Yl) 

using the fact that ~(R, yx) is a product of at most p terms ~ and the 
H61der inequality, it is not difficult to check that 

Writing 

and 

we get 

~T(Yl) x e  V~ 

I ( y l ,  Y2) = I ( y l )  ~ I(y2) 

I(y~, Y2) = I(y~) c~ I(y2) 

I(y~, y~) = I(y~) ~ I(y~2) 

j ~ I ( y l ,  Y2) 

~(R, y~, y~)= l-I Ir J 
. c 

j e l ( y l ,  Y2) 

~(R, y~, y~)= [] I~L 
J e I( y~, y~) 

x e  V z \ { Y l , Y 2 }  ~.~(x) 

• E .:.~(~(y~)) ~(R, y~, y~) ~(R, y], y~) 
~ ( Y 2 )  

Since hI(y2)l <~p, we have that ~(R, Yl, Y2) ~(R, y~, Y2) is a product of at 
most p terms ~b~ or q~,yl" 
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If we write 

i f j e  I(y~, Y2), 

~ 2 ,  ~,~ = v;>~(~(y2)) Ir ~ 
Let(y2) 

2 11'  kj r r 

~,( Y2), :~z( Yl ) 

i f jeI(yl ,  Y2), using the H61der inequality, it is not difficult to check that 

2 V;>~(~*(Y2)) r  Yl,  Ye) ~(R, y~, Y2) 

~ ~ ~xS, yl,Y 2 
j e  l(_v2) 

By recurrence on the number of points in _8 c~ Y~, writing 

we get 

j e I  

Now it is clear that we can iterate this procedure by summing over the 
configurations in Sv**l, S V , + 2 , ' " ,  SV2d, use again the H61der inequality, and 
get the result. 
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